If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2+5x-15=0
a = 48; b = 5; c = -15;
Δ = b2-4ac
Δ = 52-4·48·(-15)
Δ = 2905
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{2905}}{2*48}=\frac{-5-\sqrt{2905}}{96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{2905}}{2*48}=\frac{-5+\sqrt{2905}}{96} $
| 2x+1-6x+15=-3 | | 5x-1=+9 | | (2x+7)(x-7)=0 | | 3x-6=(14-2x) | | x/(-2,8*x+400)=0,6 | | x2+3=-9 | | -2(1-3x)=5(1-x)+4 | | 6x+8=6x+12 | | 5(x+2/3)=3x-2/3 | | 4(10+3)-8+10=x | | -4y/5-3=7 | | 4(2(5)+3)-4(2)+2(5)=x | | 6x-12=74 | | x²-289=0 | | 4x-7(x+6)=-21 | | 12*2x=0 | | x/(x+300)=0.1 | | 2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5+2x+5=16 | | 3,5x+3,5=10,5 | | 2x-1+x=24 | | (-0,75+k)2+1,25=0,25 | | -12*x-42=-100 | | (V-5)3+5v+3=4v | | 9*x^2+5*x+7=2*x^2+2*x+3 | | 9·x2+5·x+7=2·x2+2·x+3 | | 3(2n2+1)=11n | | 4*x^2-8*x+104=0 | | 39=3*x+8 | | 10=x/4-1 | | 22-2n=8 | | 10m+7m=-89 | | 7x-15=(X+2) |